How many siblings do you have?

Claude Laflamme University of Calgary

Collaborators: M. Pouzet, Université Claude-Bernard Lyon1 N. Sauer and R.Woodrow, University of Calgary

Winter School 2015 section Set Theory & Topology Hejnice, Czech Republic

• = • •

Definition (Siblings)

Write

 $\mathcal{A} \leq \mathcal{B}$ if there is an embedding from \mathcal{A} to \mathcal{B} , $\mathcal{A} \equiv \mathcal{B}$ if both $\mathcal{A} \leq \mathcal{B}$ and $\mathcal{B} \leq \mathcal{A}$.

In this case we say that \mathcal{A} and \mathcal{B} are *equimorphic*, or *siblings*, or that \mathcal{B} is a *sibling* of \mathcal{A} (and vice-versa).

• sib(A) denotes the number of siblings, up to isomorphism.

- **4 ∃ ≻** 4

Definition (Siblings)

Write

 $\mathcal{A} \leq \mathcal{B}$ if there is an embedding from \mathcal{A} to \mathcal{B} , $\mathcal{A} \equiv \mathcal{B}$ if both $\mathcal{A} \leq \mathcal{B}$ and $\mathcal{B} \leq \mathcal{A}$.

In this case we say that \mathcal{A} and \mathcal{B} are *equimorphic*, or *siblings*, or that \mathcal{B} is a *sibling* of \mathcal{A} (and vice-versa).

sib(A) denotes the number of siblings, up to isomorphism.

Example

• (Cantor-Bernstein-Schroeder) sib(X) = 1 for any set X.

イロト イヨト イヨト イヨト

Definition (Siblings)

Write

 $\mathcal{A} \leq \mathcal{B}$ if there is an embedding from \mathcal{A} to \mathcal{B} , $\mathcal{A} \equiv \mathcal{B}$ if both $\mathcal{A} \leq \mathcal{B}$ and $\mathcal{B} \leq \mathcal{A}$.

In this case we say that \mathcal{A} and \mathcal{B} are *equimorphic*, or *siblings*, or that \mathcal{B} is a *sibling* of \mathcal{A} (and vice-versa).

sib(A) denotes the number of siblings, up to isomorphism.

Example

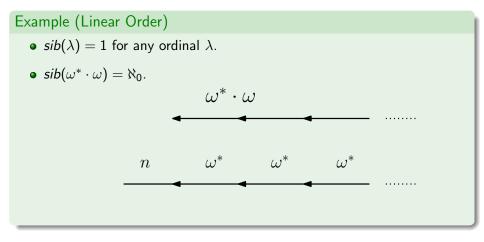
- (Cantor-Bernstein-Schroeder) sib(X) = 1 for any set X.
- (Vectors Spaces) $sib(\mathcal{V}) = 1$ for any vector space \mathcal{V} .

< ロ > < 同 > < 三 > < 三

Example (Linear Order)

• $sib(\lambda) = 1$ for any ordinal λ .

<ロ> (日) (日) (日) (日) (日)



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Examples

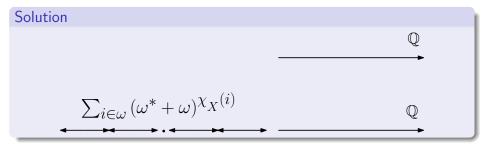
Example (Rationals)

$$sib(\langle \mathbb{Q}, < \rangle) = 2^{\aleph_0}.$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Examples

Example (Rationals)	
${\it sib}(\langle \mathbb{Q}, < angle) = 2^{leph_0}.$	



<ロ> (日) (日) (日) (日) (日)

Examples

Example (Rationals)	
${\it sib}(\langle \mathbb{Q}, < angle) = 2^{leph_0}.$	
Solution	
_	₽
$\sum_{i\in\omega} (\omega^* + \omega)^{\chi_X(i)}$	Q

Corollary (Non Scattered)

 $sib(C) = 2^{\aleph_0}$ for all non-scattered countable chains.

		2015

(日)

Conjecture (Thomassé)

If \mathcal{A} is a countable relational structure, then $sib(\mathcal{A}) = 1$, \aleph_0 , or 2^{\aleph_0} .

(日) (同) (三) (三)

Conjecture (Thomassé)

If \mathcal{A} is a countable relational structure, then $sib(\mathcal{A}) = 1$, \aleph_0 , or 2^{\aleph_0} .

Theorem (Linear Orders)

We verify this conjecture for any countable chain C.

▶ ★ 臣 ▶ ★ 臣

If T is a tree, the sib(T) = 1 or $sib(T) \ge \aleph_0$.

(日) (同) (三) (三)

If T is a tree, the sib(T) = 1 or $sib(T) \ge \aleph_0$.

Theorem (Tyomkin 09)

The conjecture is correct for rooted trees.

(日) (同) (三) (三)

If T is a tree, the sib(T) = 1 or $sib(T) \ge \aleph_0$.

Theorem (Tyomkin 09)

The conjecture is correct for rooted trees.

Theorem (Bonato - Bruhn - Diestel - Sprüssel 11)

The conjecture is correct for rayless graphs.

- 4 同 ト 4 ヨ ト 4 ヨ

If T is a tree, the sib(T) = 1 or $sib(T) \ge \aleph_0$.

Theorem (Tyomkin 09)

The conjecture is correct for rooted trees.

Theorem (Bonato - Bruhn - Diestel - Sprüssel 11)

The conjecture is correct for rayless graphs.

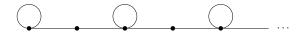
Theorem (Linear Orders)

sib(C) = 1 or $sib(C) \ge \aleph_0$ for any chain C.

(日) (同) (三) (三)

Notice that if one considers connected graphs with loops the conjecture is false. Indeed consider the following undirected graph G with loops.

Notice that if one considers connected graphs with loops the conjecture is false. Indeed consider the following undirected graph G with loops.



One can easily verify that in this case sib(G) = 2, with the following graph its only non-isomorphic sibling:

Notice that if one considers connected graphs with loops the conjecture is false. Indeed consider the following undirected graph G with loops.

One can easily verify that in this case sib(G) = 2, with the following graph its only non-isomorphic sibling:

This is also the case for connected posets, as we may simply consider a one way infinite fence, which has two equimorphic siblings:



Linear Orders

Proposition (Finite sums of ordinals and reverse ordinals)

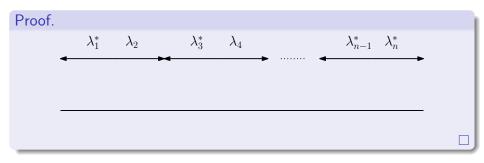
If C is a finite sum of ordinals and reverse ordinals, then sib(C) = 1.

▶ ★ 差 ▶ ★

Linear Orders

Proposition (Finite sums of ordinals and reverse ordinals)

If C is a finite sum of ordinals and reverse ordinals, then sib(C) = 1.



(日) (同) (三) (三)

(日) (同) (三) (三)

Proof.

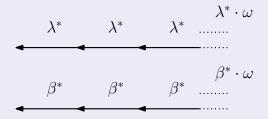
Let β be the smallest ordinal such that $\lambda^* \cdot \omega \equiv \beta^* \cdot \omega$, and $\alpha < \beta$.

$$\begin{array}{cccc} \lambda^* \cdot \omega \\ \lambda^* & \lambda^* & \lambda^* & \dots \end{array}$$

.

Proof.

Let β be the smallest ordinal such that $\lambda^* \cdot \omega \equiv \beta^* \cdot \omega$, and $\alpha < \beta$.



.

.

Proof.

Let β be the smallest ordinal such that $\lambda^* \cdot \omega \equiv \beta^* \cdot \omega$, and $\alpha < \beta$.



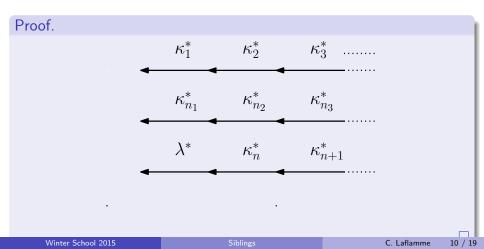
Proposition (Chain with many siblings)

If a chain is of the form $C = \sum_{i \in \omega} \kappa_i^*$ (or its reverse) where the κ_i 's form a strictly increasing chain of cardinals (or even ordinals of strictly increasing cardinalities), then $sib(C) \ge max\{2^{\aleph_0}, sup_i\{\kappa_i\}\}$.

Many Siblings

Proposition (Chain with many siblings)

If a chain is of the form $C = \sum_{i \in \omega} \kappa_i^*$ (or its reverse) where the κ_i 's form a strictly increasing chain of cardinals (or even ordinals of strictly increasing cardinalities), then $sib(C) \ge max\{2^{\aleph_0}, sup_i\{\kappa_i\}\}$.



Proposition (Chain with many siblings)

If $(\omega^* + \omega) \cdot \omega$ (or its reverse) is embeddable in a scattered chain C, then $sib(C) \ge 2^{\aleph_0}$.

- **(())) (())) ())**

Proposition (Chain with many siblings)

If $(\omega^* + \omega) \cdot \omega$ (or its reverse) is embeddable in a scattered chain C, then $sib(C) \ge 2^{\aleph_0}$.

Proof.

Proceed by induction on Hausdorff rank. For $x, y \in C$, the equivalence relations:

- $x \equiv_0 y$ if the interval [x, y] is finite.
- $x \equiv_{\alpha+1} y$ if the interval $[x/\equiv_{\alpha}, y/\equiv_{\alpha}]$ is finite in C/\equiv_{α} .

•
$$\equiv_{\beta} := \bigcup_{\alpha < \beta} \equiv_{\alpha}$$
.

Then the Hausdorff rank of *C*, written h(C), is the least ordinal α such that $\equiv_{\alpha} = \equiv_{\alpha+1}$.

・ロン ・四 ・ ・ ヨン ・ ヨン

Surordinal

Definition (Surordinal - Slater & Jullien)

• A chain C is a surordinal if $1 + \omega^*$ does not embed in C.

(日) (同) (三) (三)

Surordinal

Definition (Surordinal - Slater & Jullien)

- A chain C is a **surordinal** if $1 + \omega^*$ does not embed in C.
- A surodinal is **pure** if it is strictly left indecomposable.

- **(())) (())) ())**

Definition (Surordinal - Slater & Jullien)

- A chain C is a **surordinal** if $1 + \omega^*$ does not embed in C.
- A surodinal is **pure** if it is strictly left indecomposable.

Proposition (Jullien)

• Every non-pure surordinal is the sum of a pure surordinal (called component) and an ordinal.

→ Ξ →

Definition (Surordinal - Slater & Jullien)

- A chain C is a **surordinal** if $1 + \omega^*$ does not embed in C.
- A surodinal is **pure** if it is strictly left indecomposable.

Proposition (Jullien)

- Every non-pure surordinal is the sum of a pure surordinal (called component) and an ordinal.
- A surordinal is pure if and only if it can be written as a sum $\sum_{n < \omega^*} C_n$ where each C_n has order type ω^{α_n} and the sequence $(\alpha_n)_{n < \omega}$ is non-decreasing.

Furthermore, this sum is unique up to equimorphy.

< /₽ > < E > <

Definition (Surordinal - Slater & Jullien)

- A chain C is a **surordinal** if $1 + \omega^*$ does not embed in C.
- A surodinal is **pure** if it is strictly left indecomposable.

Proposition (Jullien)

- Every non-pure surordinal is the sum of a pure surordinal (called component) and an ordinal.
- A surordinal is pure if and only if it can be written as a sum $\sum_{n < \omega^*} C_n$ where each C_n has order type ω^{α_n} and the sequence $(\alpha_n)_{n < \omega}$ is non-decreasing. Furthermore, this sum is unique up to equimorphy.

Proposition

Neither $(\omega^* + \omega) \cdot \omega$ nor $(\omega^* + \omega) \cdot \omega^*$ are embeddable into a chain C if and only if C is a finite sum of surordinals and reverse of surordinals.

イロト 不得下 イヨト イヨ

Proposition

Let C be a surordinal. Then:

sib(C) = 1 if and only if either C is an ordinal, ω*, or C is not pure but the sequence in a component is stationary, that is C = ω^α · ω* + ω^β + γ with α + 1 ≤ β and γ ordinal.

- **(())) (())) ())**

Proposition

Let C be a surordinal. Then:

- sib(C) = 1 if and only if either C is an ordinal, ω*, or C is not pure but the sequence in a component is stationary, that is C = ω^α · ω* + ω^β + γ with α + 1 ≤ β and γ ordinal.
- Sib(C) = |C| if C is pure and the sequence $(\alpha_n)_{n < \omega}$ in the decomposition of C is stationary.

Proposition

Let C be a surordinal. Then:

- sib(C) = 1 if and only if either C is an ordinal, ω*, or C is not pure but the sequence in a component is stationary, that is C = ω^α · ω* + ω^β + γ with α + 1 ≤ β and γ ordinal.
- Sib(C) = |C| if C is pure and the sequence $(\alpha_n)_{n < \omega}$ in the decomposition of C is stationary.
- sib(C) = |C'|^{ℵ₀} if the sequence in a component C' of C is non-stationary.

< ロ > < 同 > < 三 > < 三

Theorem (Scattered Chains with Few Siblings)

Let C be any chain and $\kappa < 2^{\aleph_0}$. Then the following are equivalent:

- $sib(C) = \kappa$ and C is scattered;
- ≈ = 1, or κ ≥ ℵ₀ and C is a finite sum of surordinals and of reverse of surordinals, and if C = ∑_{j < m} D_j is such a sum with m minimum then max{sib(D_j) : j < m} = κ.

Theorem (Scattered Chains with Few Siblings)

Let C be any chain and $\kappa < 2^{\aleph_0}$. Then the following are equivalent:

- $sib(C) = \kappa$ and C is scattered;
- ≈ = 1, or κ ≥ ℵ₀ and C is a finite sum of surordinals and of reverse of surordinals, and if C = ∑_{j < m} D_j is such a sum with m minimum then max{sib(D_j) : j < m} = κ.

Corollary

When C is countable, then sib(C) = 1, \aleph_0 , or 2^{\aleph_0} .

(日) (同) (三) (三)

Corollary (Scattered Chains with Few Siblings)

Let C be a chain. Then:

- C is scattered and sib(C) = κ < 2^{ℵ₀} if and only if C is a finite sum ∑_{i<n} C_i of ordinals, surordinals of the form ω^α · ω^{*} + ω^β with α + 1 ≤ β, surordinals of the form ω^α · ω^{*} and reverse of such chains. Furthermore if the number of parts C_i of this sum such that C_i or its reverse is of the form ω^α · ω^{*} with α ≥ 1 is minimum, then κ is the maximum cardinality of these parts.
- **2** sib(C) is finite and C is scattered if and only if C is a finite sum of ordinals, surordinals of the form $\omega^{\alpha} \cdot \omega^* + \omega^{\beta}$ with $\alpha + 1 \leq \beta$, and their reverse. In which case, sib(C) = 1.

(日) (周) (三) (三)

Theorem (Chains with Few Siblings)

Let C be any chain and $\kappa < 2^{\aleph_0}$. Then the following are equivalent:

• every embedding $f : C \to C$ preserves each C_i .

Image: A image: A

Theorem (Chains with Few Siblings)

Let C be any chain and $\kappa < 2^{\aleph_0}$. Then the following are equivalent:

• every embedding $f : C \rightarrow C$ preserves each C_i .

Corollary

sib(C) = 1 or $sib(C) \ge \aleph_0$ for any chain C.

Theorem (Chains with Few Siblings)

Let C be any chain and $\kappa < 2^{\aleph_0}$. Then the following are equivalent:

• every embedding $f : C \rightarrow C$ preserves each C_i .

Corollary

sib(C) = 1 or $sib(C) \ge \aleph_0$ for any chain C.

Proposition

If $C = \sum_{i \in D} C_i$ where each C_i is scattered and D is a countably infinite dense chain, then $sib(C) \ge 2^{\aleph_0}$.

Example (Dushnik and Miller (40))

It is possible to have $C = \sum_{i \in \mathbb{R}} C_i$, and sib(C) = 1.

イロト イヨト イヨト イヨト

Example (Dushnik and Miller (40))

It is possible to have $C = \sum_{i \in \mathbb{R}} C_i$, and sib(C) = 1.

Solution

 ${\mathbb R}$ can be decomposed into two disjoint dense subsets E and F such that

$$g(E) \cap F \neq \emptyset$$
 and $g(F) \cap E \neq \emptyset$

for any non-identity order preserving map $g : \mathbb{R} \to \mathbb{R}$.

Example (Dushnik and Miller (40))

It is possible to have $C = \sum_{i \in \mathbb{R}} C_i$, and sib(C) = 1.

Solution

 ${\mathbb R}$ can be decomposed into two disjoint dense subsets E and F such that

 $g(E) \cap F \neq \emptyset$ and $g(F) \cap E \neq \emptyset$

for any non-identity order preserving map $g : \mathbb{R} \to \mathbb{R}$. Thus if $C = \sum_{i \in \mathbb{R}} C_i$, where:

$$\begin{cases} |C_i| = 2 \text{ if } i \in E \\ |C_i| = 1 \text{ if } i \notin E \ (i \in F), \end{cases}$$

then C itself is embedding rigid.

(日) (同) (三) (三)

Problem

Suppose that $C = \sum_{i \in D} C_i$, where:

- D is embedding rigid,
- each C_i is scattered,
- $sib(C_i) = 1$ for all but finitely many $i \in D$, and
- $max{sib(C_i): i \in D} = \kappa$.

Does it follow that $sib(C) = \kappa$?

- 4 同 6 4 日 6 4 日 6

Problem

Suppose that $C = \sum_{i \in D} C_i$, where:

- D is embedding rigid,
- each C_i is scattered,
- $sib(C_i) = 1$ for all but finitely many $i \in D$, and
- $max{sib(C_i) : i \in D} = \kappa$.

Does it follow that $sib(C) = \kappa$?

Problem

Suppose that a chain C satisfies $sib(C) = \kappa < 2^{\aleph_0}$, can C be in fact be written as in the previous problem?

- 4 同 ト 4 ヨ ト 4 ヨ

Problem

Suppose that $C = \sum_{i \in D} C_i$, where:

- D is embedding rigid,
- each C_i is scattered,

• $sib(C_i) = 1$ for all but finitely many $i \in D$, and

• $max{sib(C_i): i \in D} = \kappa$.

Does it follow that $sib(C) = \kappa$?

Problem

Suppose that a chain C satisfies $sib(C) = \kappa < 2^{\aleph_0}$, can C be in fact be written as in the previous problem?

Problem

Suppose that $C = \sum_{i \in D} C_i$, where D and every C_i are embedding rigid, is C necessarily embedding rigid?

Example

(Dushnik and Miller (40)) There are uncountable dense chains D such that sib(D) = 1.

< ロ > < 同 > < 三 > < 三

Example

- (Dushnik and Miller (40)) There are uncountable dense chains D such that sib(D) = 1.
- (Baumgartner (76)) There are κ-dense rigid chains of size κ for each regular and uncountable cardinal κ.

.

Example

- (Dushnik and Miller (40))
 There are uncountable dense chains D such that sib(D) = 1.
- (Baumgartner (76))
 There are κ-dense rigid chains of size κ for each regular and uncountable cardinal κ.

Question

Are there κ -dense embedding rigid chains of size κ for each regular and uncountable cardinal κ ?