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Siblings

Definition (Siblings)

Write

A ≤ B if there is an embedding from A to B,

A ≡ B if both A ≤ B and B ≤ A.

In this case we say that A and B are equimorphic,
or siblings, or that B is a sibling of A (and vice-versa).

sib(A) denotes the number of siblings, up to isomorphism.

Example

(Cantor-Bernstein-Schroeder) sib(X ) = 1 for any set X .

(Vectors Spaces) sib(V) = 1 for any vector space V.
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Examples

Example (Linear Order)

sib(λ) = 1 for any ordinal λ.

sib(ω∗ · ω) = ℵ0.
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Examples

Example (Rationals)

sib(〈Q, <〉) = 2ℵ0 .

Solution

Corollary (Non Scattered)

sib(C ) = 2ℵ0 for all non-scattered countable chains.
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Trees, Linear Orders and other Structures

Conjecture (Thomassé)

If A is a countable relational structure, then sib(A) = 1, ℵ0, or 2ℵ0 .

Theorem (Linear Orders)

We verify this conjecture for any countable chain C .
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Trees, Linear Orders and other Structures

Conjecture (Bonato - Tardif 06)

If T is a tree, the sib(T ) = 1 or sib(T ) ≥ ℵ0.

Theorem (Tyomkin 09)

The conjecture is correct for rooted trees.

Theorem (Bonato - Bruhn - Diestel - Sprüssel 11)

The conjecture is correct for rayless graphs.

Theorem (Linear Orders)

sib(C ) = 1 or sib(C ) ≥ ℵ0 for any chain C .

Winter School 2015 Siblings C. Laflamme 6 / 19



Trees, Linear Orders and other Structures

Conjecture (Bonato - Tardif 06)

If T is a tree, the sib(T ) = 1 or sib(T ) ≥ ℵ0.

Theorem (Tyomkin 09)

The conjecture is correct for rooted trees.

Theorem (Bonato - Bruhn - Diestel - Sprüssel 11)

The conjecture is correct for rayless graphs.

Theorem (Linear Orders)

sib(C ) = 1 or sib(C ) ≥ ℵ0 for any chain C .

Winter School 2015 Siblings C. Laflamme 6 / 19



Trees, Linear Orders and other Structures

Conjecture (Bonato - Tardif 06)

If T is a tree, the sib(T ) = 1 or sib(T ) ≥ ℵ0.

Theorem (Tyomkin 09)

The conjecture is correct for rooted trees.

Theorem (Bonato - Bruhn - Diestel - Sprüssel 11)

The conjecture is correct for rayless graphs.

Theorem (Linear Orders)

sib(C ) = 1 or sib(C ) ≥ ℵ0 for any chain C .

Winter School 2015 Siblings C. Laflamme 6 / 19



Trees, Linear Orders and other Structures

Conjecture (Bonato - Tardif 06)

If T is a tree, the sib(T ) = 1 or sib(T ) ≥ ℵ0.

Theorem (Tyomkin 09)

The conjecture is correct for rooted trees.

Theorem (Bonato - Bruhn - Diestel - Sprüssel 11)

The conjecture is correct for rayless graphs.

Theorem (Linear Orders)

sib(C ) = 1 or sib(C ) ≥ ℵ0 for any chain C .

Winter School 2015 Siblings C. Laflamme 6 / 19



Trees, Linear Orders and other Structures

Notice that if one considers connected graphs with loops the conjecture is
false. Indeed consider the following undirected graph G with loops.

· · ·

One can easily verify that in this case sib(G ) = 2, with the following graph
its only non-isomorphic sibling:

This is also the case for connected posets, as we may simply consider a
one way infinite fence, which has two equimorphic siblings:
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Linear Orders Sums of Ordinals

Linear Orders

Proposition (Finite sums of ordinals and reverse ordinals)

If C is a finite sum of ordinals and reverse ordinals, then sib(C ) = 1.

Proof.

λ∗1 λ2 λ∗3 λ4 λ∗n−1 λ∗n
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Linear Orders Many Siblings

Proposition (Chain with many siblings)

For any ordinal λ, sib(λ∗ · ω) = |λ|.

Proof.

Let β be the smallest ordinal such that λ∗ · ω ≡ β∗ · ω, and α < β.
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Linear Orders Many Siblings

Proposition (Chain with many siblings)

If a chain is of the form C =
∑

i∈ω κ
∗
i (or its reverse) where the κi ’s form

a strictly increasing chain of cardinals (or even ordinals of strictly
increasing cardinalities), then sib(C ) ≥ max{2ℵ0 , supi{κi}}.

Proof.
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Linear Orders Many Siblings

Proposition (Chain with many siblings)

If (ω∗ + ω) · ω (or its reverse) is embeddable in a scattered chain C , then
sib(C ) ≥ 2ℵ0 .

Proof.

Proceed by induction on Hausdorff rank. For x , y ∈ C , the equivalence
relations:

x ≡0 y if the interval [x , y ] is finite.

x ≡α+1 y if the interval [x/≡α, y/≡α] is finite in C/ ≡α.

≡β:=
⋃
α<β ≡α.

Then the Hausdorff rank of C , written h(C ), is the least ordinal α such
that ≡α = ≡α+1.
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Linear Orders Surordinal

Definition (Surordinal - Slater & Jullien)

A chain C is a surordinal if 1 + ω∗ does not embed in C .

A surodinal is pure if it is strictly left indecomposable.

Proposition (Jullien)

Every non-pure surordinal is the sum of a pure surordinal (called
component) and an ordinal.

A surordinal is pure if and only if it can be written as a sum∑
n<ω∗ Cn where each Cn has order type ωαn and the sequence

(αn)n<ω is non-decreasing.
Furthermore, this sum is unique up to equimorphy.

Proposition

Neither (ω∗ + ω) · ω nor (ω∗ + ω) · ω∗ are embeddable into a chain C if
and only if C is a finite sum of surordinals and reverse of surordinals.
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Linear Orders Surordinal

Proposition

Let C be a surordinal. Then:

1 sib(C ) = 1 if and only if either C is an ordinal, ω∗, or C is not pure
but the sequence in a component is stationary, that is
C = ωα · ω∗ + ωβ + γ with α + 1 ≤ β and γ ordinal.

2 sib(C ) = |C | if C is pure and the sequence (αn)n<ω in the
decomposition of C is stationary.

3 sib(C ) = |C ′|ℵ0 if the sequence in a component C ′ of C is
non-stationary.
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Linear Orders Scattered Chains with Few Siblings

Theorem (Scattered Chains with Few Siblings)

Let C be any chain and κ < 2ℵ0 . Then the following are equivalent:

1 sib(C ) = κ and C is scattered;

2 κ = 1, or κ ≥ ℵ0 and C is a finite sum of surordinals and of reverse of
surordinals, and if C =

∑
j<m Dj is such a sum with m minimum then

max{sib(Dj) : j < m} = κ.

Corollary

When C is countable, then sib(C ) = 1, ℵ0, or 2ℵ0 .
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Linear Orders Scattered Chains with Few Siblings

Corollary (Scattered Chains with Few Siblings)

Let C be a chain. Then:

1 C is scattered and sib(C ) = κ < 2ℵ0 if and only if C is a finite sum∑
i<n Ci of ordinals, surordinals of the form ωα · ω∗ + ωβ with

α+ 1 ≤ β, surordinals of the form ωα · ω∗ and reverse of such chains.
Furthermore if the number of parts Ci of this sum such that Ci or its
reverse is of the form ωα · ω∗ with α ≥ 1 is minimum, then κ is the
maximum cardinality of these parts.

2 sib(C ) is finite and C is scattered if and only if C is a finite sum of
ordinals, surordinals of the form ωα · ω∗ + ωβ with α + 1 ≤ β, and
their reverse. In which case, sib(C ) = 1.
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Linear Orders Chains with Few Siblings

Theorem (Chains with Few Siblings)

Let C be any chain and κ < 2ℵ0 . Then the following are equivalent:

1 sib(C ) = κ.
2 C =

∑
i∈D Ci , where:

I D is dense (singleton or infinite),
I each Ci is scattered,
I sib(Ci ) = 1 for all but finitely many i ∈ D,
I max{sib(Ci ) : i ∈ D} = κ, and
I every embedding f : C → C preserves each Ci .

Corollary

sib(C ) = 1 or sib(C ) ≥ ℵ0 for any chain C .

Proposition

If C =
∑

i∈D Ci where each Ci is scattered and D is a countably infinite
dense chain, then sib(C ) ≥ 2ℵ0 .
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Linear Orders Chains with Few Siblings

Example (Dushnik and Miller (40))

It is possible to have C =
∑

i∈R Ci , and sib(C ) = 1.

Solution

R can be decomposed into two disjoint dense subsets E and F such that

g(E ) ∩ F 6= ∅ and g(F ) ∩ E 6= ∅

for any non-identity order preserving map g : R→ R.
Thus if C =

∑
i∈R Ci , where:

{
|Ci | = 2 if i ∈ E
|Ci | = 1 if i 6∈ E (i ∈ F ),

then C itself is embedding rigid.
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Linear Orders Chains with Few Siblings

Problem

Suppose that C =
∑

i∈D Ci , where:

D is embedding rigid,

each Ci is scattered,

sib(Ci ) = 1 for all but finitely many i ∈ D, and

max{sib(Ci ) : i ∈ D} = κ.

Does it follow that sib(C ) = κ?

Problem

Suppose that a chain C satisfies sib(C ) = κ < 2ℵ0 , can C be in fact be
written as in the previous problem?

Problem

Suppose that C =
∑

i∈D Ci , where D and every Ci are embedding rigid, is
C necessarily embedding rigid?
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Conclusion

Example

(Dushnik and Miller (40))
There are uncountable dense chains D such that sib(D) = 1.

(Baumgartner (76))
There are κ-dense rigid chains of size κ for each regular and
uncountable cardinal κ.

Question

Are there κ-dense embedding rigid chains of size κ for each regular and
uncountable cardinal κ?
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