How many siblings do you have?

Claude Laflamme
University of Calgary

Collaborators:
M. Pouzet, Université Claude-Bernard Lyon1
N. Sauer and R.Woodrow, University of Calgary

Winter School 2015
section Set Theory \& Topology
Hejnice, Czech Republic

Definition (Siblings)

- Write

$$
\begin{aligned}
& \mathcal{A} \leq \mathcal{B} \text { if there is an embedding from } \mathcal{A} \text { to } \mathcal{B}, \\
& \mathcal{A} \equiv \mathcal{B} \text { if both } \mathcal{A} \leq \mathcal{B} \text { and } \mathcal{B} \leq \mathcal{A} .
\end{aligned}
$$

In this case we say that \mathcal{A} and \mathcal{B} are equimorphic, or siblings, or that \mathcal{B} is a sibling of \mathcal{A} (and vice-versa).

- $\operatorname{sib}(\mathcal{A})$ denotes the number of siblings, up to isomorphism.

Definition (Siblings)

- Write

$$
\begin{aligned}
& \mathcal{A} \leq \mathcal{B} \text { if there is an embedding from } \mathcal{A} \text { to } \mathcal{B}, \\
& \mathcal{A} \equiv \mathcal{B} \text { if both } \mathcal{A} \leq \mathcal{B} \text { and } \mathcal{B} \leq \mathcal{A} .
\end{aligned}
$$

In this case we say that \mathcal{A} and \mathcal{B} are equimorphic, or siblings, or that \mathcal{B} is a sibling of \mathcal{A} (and vice-versa).

- $\operatorname{sib}(\mathcal{A})$ denotes the number of siblings, up to isomorphism.

Example

- (Cantor-Bernstein-Schroeder) $\operatorname{sib}(X)=1$ for any set X.

Definition (Siblings)

- Write

$$
\begin{aligned}
& \mathcal{A} \leq \mathcal{B} \text { if there is an embedding from } \mathcal{A} \text { to } \mathcal{B}, \\
& \mathcal{A} \equiv \mathcal{B} \text { if both } \mathcal{A} \leq \mathcal{B} \text { and } \mathcal{B} \leq \mathcal{A} .
\end{aligned}
$$

In this case we say that \mathcal{A} and \mathcal{B} are equimorphic, or siblings, or that \mathcal{B} is a sibling of \mathcal{A} (and vice-versa).

- $\operatorname{sib}(\mathcal{A})$ denotes the number of siblings, up to isomorphism.

Example

- (Cantor-Bernstein-Schroeder) $\operatorname{sib}(X)=1$ for any set X.
- (Vectors Spaces) $\operatorname{sib}(\mathcal{V})=1$ for any vector space \mathcal{V}.

Example (Linear Order)

- $\operatorname{sib}(\lambda)=1$ for any ordinal λ.

Example (Linear Order)

- $\operatorname{sib}(\lambda)=1$ for any ordinal λ.
- $\operatorname{sib}\left(\omega^{*} \cdot \omega\right)=\aleph_{0}$.

$$
\omega^{*} \cdot \omega
$$

Example (Rationals)

 $\operatorname{sib}(\langle\mathbb{Q},<\rangle)=2^{N_{0}}$.
Example (Rationals) $\operatorname{sib}(\langle\mathbb{Q},<\rangle)=2^{\aleph_{0}}$.

Solution

$\sum_{i \in \omega}\left(\omega^{*}+\omega\right)^{\chi_{X}{ }^{(i)}}$

Example (Rationals)

$\operatorname{sib}(\langle\mathbb{Q},<\rangle)=2^{\aleph_{0}}$.

Solution

Corollary (Non Scattered)

$\operatorname{sib}(C)=2^{\aleph_{0}}$ for all non-scattered countable chains.

Conjecture (Thomassé)

If \mathcal{A} is a countable relational structure, then $\operatorname{sib}(\mathcal{A})=1, \aleph_{0}$, or $2^{\aleph_{0}}$.

Conjecture (Thomassé)

If \mathcal{A} is a countable relational structure, then $\operatorname{sib}(\mathcal{A})=1, \aleph_{0}$, or $2^{\aleph_{0}}$.

Theorem (Linear Orders)
We verify this conjecture for any countable chain C.

Conjecture (Bonato - Tardif 06)

If T is a tree, the $\operatorname{sib}(T)=1$ or $\operatorname{sib}(T) \geq \aleph_{0}$.

Conjecture (Bonato - Tardif 06)

If T is a tree, the $\operatorname{sib}(T)=1$ or $\operatorname{sib}(T) \geq \aleph_{0}$.

Theorem (Tyomkin 09)
The conjecture is correct for rooted trees.

```
Conjecture (Bonato - Tardif 06)
If T is a tree, the sib}(T)=1\mathrm{ or }\operatorname{sib}(T)\geq\mp@subsup{\aleph}{0}{}\mathrm{ .
```


Theorem (Tyomkin 09)

The conjecture is correct for rooted trees.

Theorem (Bonato - Bruhn - Diestel - Sprüssel 11)
The conjecture is correct for rayless graphs.

```
Conjecture (Bonato - Tardif 06)
If T is a tree, the sib}(T)=1\mathrm{ or }\operatorname{sib}(T)\geq\mp@subsup{\aleph}{0}{}\mathrm{ .
```


Theorem (Tyomkin 09)

The conjecture is correct for rooted trees.

Theorem (Bonato - Bruhn - Diestel - Sprüssel 11)
The conjecture is correct for rayless graphs.

```
Theorem (Linear Orders)
sib}(C)=1\mathrm{ or sib (C) \ No for any chain C.
```

Notice that if one considers connected graphs with loops the conjecture is false. Indeed consider the following undirected graph G with loops.

Notice that if one considers connected graphs with loops the conjecture is false. Indeed consider the following undirected graph G with loops.

One can easily verify that in this case $\operatorname{sib}(G)=2$, with the following graph its only non-isomorphic sibling:

Notice that if one considers connected graphs with loops the conjecture is false. Indeed consider the following undirected graph G with loops.

One can easily verify that in this case $\operatorname{sib}(G)=2$, with the following graph its only non-isomorphic sibling:

This is also the case for connected posets, as we may simply consider a one way infinite fence, which has two equimorphic siblings:

Linear Orders

Proposition (Finite sums of ordinals and reverse ordinals)
If C is a finite sum of ordinals and reverse ordinals, then $\operatorname{sib}(C)=1$.

Linear Orders

Proposition (Finite sums of ordinals and reverse ordinals)
If C is a finite sum of ordinals and reverse ordinals, then $\operatorname{sib}(C)=1$.

Proof.

Proposition (Chain with many siblings)

For any ordinal $\lambda, \operatorname{sib}\left(\lambda^{*} \cdot \omega\right)=|\lambda|$.

Proposition (Chain with many siblings)

For any ordinal $\lambda, \operatorname{sib}\left(\lambda^{*} \cdot \omega\right)=|\lambda|$.

Proof.

Let β be the smallest ordinal such that $\lambda^{*} \cdot \omega \equiv \beta^{*} \cdot \omega$, and $\alpha<\beta$.

$$
\begin{array}{lllll}
\lambda^{*} & \lambda^{*} & \lambda^{*} & \ldots \ldots \ldots
\end{array}
$$

Proposition (Chain with many siblings)

For any ordinal $\lambda, \operatorname{sib}\left(\lambda^{*} \cdot \omega\right)=|\lambda|$.

Proof.

Let β be the smallest ordinal such that $\lambda^{*} \cdot \omega \equiv \beta^{*} \cdot \omega$, and $\alpha<\beta$.

Proposition (Chain with many siblings)

For any ordinal $\lambda, \operatorname{sib}\left(\lambda^{*} \cdot \omega\right)=|\lambda|$.

Proof.

Let β be the smallest ordinal such that $\lambda^{*} \cdot \omega \equiv \beta^{*} \cdot \omega$, and $\alpha<\beta$.

Proposition (Chain with many siblings)

If a chain is of the form $C=\sum_{i \in \omega} \kappa_{i}^{*}$ (or its reverse) where the κ_{i} 's form a strictly increasing chain of cardinals (or even ordinals of strictly increasing cardinalities), then $\operatorname{sib}(C) \geq \max \left\{2^{\aleph_{0}}, \sup _{i}\left\{\kappa_{i}\right\}\right\}$.

Proposition (Chain with many siblings)

If a chain is of the form $C=\sum_{i \in \omega} \kappa_{i}^{*}$ (or its reverse) where the κ_{i} 's form a strictly increasing chain of cardinals (or even ordinals of strictly increasing cardinalities), then $\operatorname{sib}(C) \geq \max \left\{2^{\aleph_{0}}, \sup _{i}\left\{\kappa_{i}\right\}\right\}$.

Proof.

Proposition (Chain with many siblings)
If $\left(\omega^{*}+\omega\right) \cdot \omega$ (or its reverse) is embeddable in a scattered chain C, then $\operatorname{sib}(C) \geq 2^{\aleph_{0}}$.

Proposition (Chain with many siblings)

If $\left(\omega^{*}+\omega\right) \cdot \omega$ (or its reverse) is embeddable in a scattered chain C, then $\operatorname{sib}(C) \geq 2^{\aleph_{0}}$.

Proof.

Proceed by induction on Hausdorff rank. For $x, y \in C$, the equivalence relations:

- $x \equiv 0 y$ if the interval $[x, y]$ is finite.
- $x \equiv_{\alpha+1} y$ if the interval $\left[x / \equiv_{\alpha}, y / \equiv_{\alpha}\right]$ is finite in C / \equiv_{α}.
- $\equiv_{\beta}:=\bigcup_{\alpha<\beta} \equiv{ }_{\alpha}$.

Then the Hausdorff rank of C, written $h(C)$, is the least ordinal α such that $\equiv_{\alpha}=\equiv_{\alpha+1}$.

Definition (Surordinal - Slater \& Jullien)

- A chain C is a surordinal if $1+\omega^{*}$ does not embed in C.

Definition (Surordinal - Slater \& Jullien)

- A chain C is a surordinal if $1+\omega^{*}$ does not embed in C.
- A surodinal is pure if it is strictly left indecomposable.

Definition (Surordinal - Slater \& Jullien)

- A chain C is a surordinal if $1+\omega^{*}$ does not embed in C.
- A surodinal is pure if it is strictly left indecomposable.

Proposition (Jullien)

- Every non-pure surordinal is the sum of a pure surordinal (called component) and an ordinal.

Definition (Surordinal - Slater \& Jullien)

- A chain C is a surordinal if $1+\omega^{*}$ does not embed in C.
- A surodinal is pure if it is strictly left indecomposable.

Proposition (Jullien)

- Every non-pure surordinal is the sum of a pure surordinal (called component) and an ordinal.
- A surordinal is pure if and only if it can be written as a sum $\sum_{n<\omega^{*}} C_{n}$ where each C_{n} has order type $\omega^{\alpha_{n}}$ and the sequence $\left(\alpha_{n}\right)_{n<\omega}$ is non-decreasing.
Furthermore, this sum is unique up to equimorphy.

Definition (Surordinal - Slater \& Jullien)

- A chain C is a surordinal if $1+\omega^{*}$ does not embed in C.
- A surodinal is pure if it is strictly left indecomposable.

Proposition (Jullien)

- Every non-pure surordinal is the sum of a pure surordinal (called component) and an ordinal.
- A surordinal is pure if and only if it can be written as a sum $\sum_{n<\omega^{*}} C_{n}$ where each C_{n} has order type $\omega^{\alpha_{n}}$ and the sequence $\left(\alpha_{n}\right)_{n<\omega}$ is non-decreasing.
Furthermore, this sum is unique up to equimorphy.

Proposition

Neither $\left(\omega^{*}+\omega\right) \cdot \omega \operatorname{nor}\left(\omega^{*}+\omega\right) \cdot \omega^{*}$ are embeddable into a chain C if and only if C is a finite sum of surordinals and reverse of surordinals.

Proposition

Let C be a surordinal. Then:
(1) $\operatorname{sib}(C)=1$ if and only if either C is an ordinal, ω^{*}, or C is not pure but the sequence in a component is stationary, that is $C=\omega^{\alpha} \cdot \omega^{*}+\omega^{\beta}+\gamma$ with $\alpha+1 \leq \beta$ and γ ordinal.

Proposition

Let C be a surordinal. Then:
(1) $\operatorname{sib}(C)=1$ if and only if either C is an ordinal, ω^{*}, or C is not pure but the sequence in a component is stationary, that is $C=\omega^{\alpha} \cdot \omega^{*}+\omega^{\beta}+\gamma$ with $\alpha+1 \leq \beta$ and γ ordinal.
(2) $\operatorname{sib}(C)=|C|$ if C is pure and the sequence $\left(\alpha_{n}\right)_{n<\omega}$ in the decomposition of C is stationary.

Proposition

Let C be a surordinal. Then:
(1) $\operatorname{sib}(C)=1$ if and only if either C is an ordinal, ω^{*}, or C is not pure but the sequence in a component is stationary, that is $C=\omega^{\alpha} \cdot \omega^{*}+\omega^{\beta}+\gamma$ with $\alpha+1 \leq \beta$ and γ ordinal.
(2) $\operatorname{sib}(C)=|C|$ if C is pure and the sequence $\left(\alpha_{n}\right)_{n<\omega}$ in the decomposition of C is stationary.
(3) $\operatorname{sib}(C)=\left|C^{\prime}\right|^{\aleph_{0}}$ if the sequence in a component C^{\prime} of C is non-stationary.

Theorem (Scattered Chains with Few Siblings)

Let C be any chain and $\kappa<2^{\aleph_{0}}$. Then the following are equivalent:
(1) $\operatorname{sib}(C)=\kappa$ and C is scattered;
(2) $\kappa=1$, or $\kappa \geq \aleph_{0}$ and C is a finite sum of surordinals and of reverse of surordinals, and if $C=\sum_{j<m} D_{j}$ is such a sum with m minimum then $\max \left\{\operatorname{sib}\left(D_{j}\right): j<m\right\}=\kappa$.

Theorem (Scattered Chains with Few Siblings)

Let C be any chain and $\kappa<2^{\aleph_{0}}$. Then the following are equivalent:
(1) $\operatorname{sib}(C)=\kappa$ and C is scattered;
(2) $\kappa=1$, or $\kappa \geq \aleph_{0}$ and C is a finite sum of surordinals and of reverse of surordinals, and if $C=\sum_{j<m} D_{j}$ is such a sum with m minimum then $\max \left\{\operatorname{sib}\left(D_{j}\right): j<m\right\}=\kappa$.

Corollary

When C is countable, then $\operatorname{sib}(C)=1, \aleph_{0}$, or $2^{\aleph_{0}}$.

Corollary (Scattered Chains with Few Siblings)

 Let C be a chain. Then:(1) C is scattered and $\operatorname{sib}(C)=\kappa<2^{\aleph_{0}}$ if and only if C is a finite sum $\sum_{i<n} C_{i}$ of ordinals, surordinals of the form $\omega^{\alpha} \cdot \omega^{*}+\omega^{\beta}$ with $\alpha+1 \leq \beta$, surordinals of the form $\omega^{\alpha} \cdot \omega^{*}$ and reverse of such chains. Furthermore if the number of parts C_{i} of this sum such that C_{i} or its reverse is of the form $\omega^{\alpha} \cdot \omega^{*}$ with $\alpha \geq 1$ is minimum, then κ is the maximum cardinality of these parts.
(2) $\operatorname{sib}(C)$ is finite and C is scattered if and only if C is a finite sum of ordinals, surordinals of the form $\omega^{\alpha} \cdot \omega^{*}+\omega^{\beta}$ with $\alpha+1 \leq \beta$, and their reverse. In which case, $\operatorname{sib}(C)=1$.

Theorem (Chains with Few Siblings)

Let C be any chain and $\kappa<2^{\aleph_{0}}$. Then the following are equivalent:
(1) $\operatorname{sib}(C)=\kappa$.
(2) $C=\sum_{i \in D} C_{i}$, where:
D is dense (singleton or infinite),
each C_{i} is scattered,
$\operatorname{sib}\left(C_{i}\right)=1$ for all but finitely many $i \in D$,

- $\max \left\{\operatorname{sib}\left(C_{i}\right): i \in D\right\}=\kappa$, and
- every embedding $f: C \rightarrow C$ preserves each C_{i}.

Theorem (Chains with Few Siblings)

Let C be any chain and $\kappa<2^{\aleph_{0}}$. Then the following are equivalent:
(1) $\operatorname{sib}(C)=\kappa$.
(2) $C=\sum_{i \in D} C_{i}$, where:
D is dense (singleton or infinite),
each C_{i} is scattered,
$\operatorname{sib}\left(C_{i}\right)=1$ for all but finitely many $i \in D$,

- $\max \left\{\operatorname{sib}\left(C_{i}\right): i \in D\right\}=\kappa$, and
- every embedding $f: C \rightarrow C$ preserves each C_{i}.

Corollary
 $\operatorname{sib}(C)=1$ or $\operatorname{sib}(C) \geq \aleph_{0}$ for any chain C.

Theorem (Chains with Few Siblings)

Let C be any chain and $\kappa<2^{\aleph_{0}}$. Then the following are equivalent:
(1) $\operatorname{sib}(C)=\kappa$.
(c) $C=\sum_{i \in D} C_{i}$, where:
D is dense (singleton or infinite),
each C_{i} is scattered,
$\operatorname{sib}\left(C_{i}\right)=1$ for all but finitely many $i \in D$,
$\max \left\{\operatorname{sib}\left(C_{i}\right): i \in D\right\}=\kappa$, and every embedding $f: C \rightarrow C$ preserves each C_{i}.

Corollary $\operatorname{sib}(C)=1$ or $\operatorname{sib}(C) \geq \aleph_{0}$ for any chain C.

Proposition

If $C=\sum_{i \in D} C_{i}$ where each C_{i} is scattered and D is a countably infinite dense chain, then $\operatorname{sib}(C) \geq 2^{\aleph_{0}}$.

Example (Dushnik and Miller (40))

It is possible to have $C=\sum_{i \in \mathbb{R}} C_{i}$, and $\operatorname{sib}(C)=1$.

Example (Dushnik and Miller (40))

It is possible to have $C=\sum_{i \in \mathbb{R}} C_{i}$, and $\operatorname{sib}(C)=1$.

Solution

\mathbb{R} can be decomposed into two disjoint dense subsets E and F such that

$$
g(E) \cap F \neq \emptyset \text { and } g(F) \cap E \neq \emptyset
$$

for any non-identity order preserving $\operatorname{map} g: \mathbb{R} \rightarrow \mathbb{R}$.

Example (Dushnik and Miller (40))

It is possible to have $C=\sum_{i \in \mathbb{R}} C_{i}$, and $\operatorname{sib}(C)=1$.

Solution

\mathbb{R} can be decomposed into two disjoint dense subsets E and F such that

$$
g(E) \cap F \neq \emptyset \text { and } g(F) \cap E \neq \emptyset
$$

for any non-identity order preserving map $g: \mathbb{R} \rightarrow \mathbb{R}$.
Thus if $C=\sum_{i \in \mathbb{R}} C_{i}$, where:

$$
\left\{\begin{array}{l}
\left|C_{i}\right|=2 \text { if } i \in E \\
\left|C_{i}\right|=1 \text { if } i \notin E(i \in F),
\end{array}\right.
$$

then C itself is embedding rigid.

Problem

Suppose that $C=\sum_{i \in D} C_{i}$, where:

- D is embedding rigid,
- each C_{i} is scattered,
- $\operatorname{sib}\left(C_{i}\right)=1$ for all but finitely many $i \in D$, and
- $\max \left\{\operatorname{sib}\left(C_{i}\right): i \in D\right\}=\kappa$.

Does it follow that $\operatorname{sib}(C)=\kappa$?

Problem

Suppose that $C=\sum_{i \in D} C_{i}$, where:

- D is embedding rigid,
- each C_{i} is scattered,
- $\operatorname{sib}\left(C_{i}\right)=1$ for all but finitely many $i \in D$, and
- $\max \left\{\operatorname{sib}\left(C_{i}\right): i \in D\right\}=\kappa$.

Does it follow that $\operatorname{sib}(C)=\kappa$?

Problem

Suppose that a chain C satisfies $\operatorname{sib}(C)=\kappa<2^{\aleph_{0}}$, can C be in fact be written as in the previous problem?

Problem

Suppose that $C=\sum_{i \in D} C_{i}$, where:

- D is embedding rigid,
- each C_{i} is scattered,
- $\operatorname{sib}\left(C_{i}\right)=1$ for all but finitely many $i \in D$, and
- $\max \left\{\operatorname{sib}\left(C_{i}\right): i \in D\right\}=\kappa$.

Does it follow that $\operatorname{sib}(C)=\kappa$?

Problem

Suppose that a chain C satisfies $\operatorname{sib}(C)=\kappa<2^{\aleph_{0}}$, can C be in fact be written as in the previous problem?

Problem

Suppose that $C=\sum_{i \in D} C_{i}$, where D and every C_{i} are embedding rigid, is C necessarily embedding rigid?

Example

- (Dushnik and Miller (40)) There are uncountable dense chains D such that $\operatorname{sib}(D)=1$.

Example

- (Dushnik and Miller (40)) There are uncountable dense chains D such that $\operatorname{sib}(D)=1$.
- (Baumgartner (76))

There are κ-dense rigid chains of size κ for each regular and uncountable cardinal κ.

Example

- (Dushnik and Miller (40)) There are uncountable dense chains D such that $\operatorname{sib}(D)=1$.
- (Baumgartner (76))

There are κ-dense rigid chains of size κ for each regular and uncountable cardinal κ.

Question

Are there κ-dense embedding rigid chains of size κ for each regular and uncountable cardinal κ ?

